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Abstract—Trash accumulation around bins is a common issue
due to improper disposal habits. In this project, to help alleviate
this issue in indoor settings, we developed the litter-rescuing
robot (LR-Bot), an autonomous litter-picking robot that leverages
the Jetson Nano 2GB for edge computing and a 4 DoF robotic
arm with a suction gripper for trash picking. To evaluate our
robot, we collected a custom dataset named TrashDet, featuring
images from 9 common indoor trash categories, each annotated
with bounding boxes. After testing three popular detection
algorithms on Jetson Nano, we selected YOLOv5s as our object
detector for its low latency and high accuracy. The robot uses
a front-mounted camera to identify and position target trash,
achieving an inference speed of 12 FPS, complemented by an
ultrasonic sensor for distance measurements. It is controlled
through a customized task-specific control loop. In our testing
environments, our LR-Bot achieved an overall success rate of
78.33% in complete litter rescue tasks across six trash categories
over 120 trials.

Index Terms—Robot, Jetson Nano, Object Detection, Control

I. INTRODUCTION

Trash bins are ubiquitous in both outdoor and indoor set-
tings worldwide. Despite their prevalence, improper disposal
often leads to trash accumulating around these bins, posing
significant environmental risks. This issue requires govern-
ments to allocate considerable resources to maintain clean-
liness, burdening their budgets. Advancements in robotics and
deep learning have introduced new possibilities for addressing
such challenges. Robots are now capable of performing tasks
that are too difficult or hazardous for humans, excelling in
roles that require heavy lifting or involve dangerous conditions
[1]–[3]. The development of Embodied AI has significantly
enhanced robotic intelligence, driven by advancements in com-
putational hardware and algorithms [4]. Similarly to humans,
vision is a fundamental component of how robots perceive and
interact with their environment, providing critical information
for decision-making processes. Equipped with camera sensors
and powerful object detection algorithms, such as YOLO [5],
Fast-RCNN [6], and DETR [7], robots can now perceive and
interact with their environments effectively. Existing research
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has demonstrated the successful deployment of litter-picking
robots utilizing visual (i.e., RGB+Depth) and tactile inputs
in outdoor environments [8]. However, the litter-picking task
remains under-explored in indoor environments.

In this project, we propose the development of an in-
novative litter-picking robot designed specifically for indoor
environments. Powered by the NVIDIA Jetson Nano, this
robot features a simple yet effective robotic arm with a jaw
gripper and a 4WD car base equipped with encoder motors
and an ultrasonic distance sensor. It is designed to improve
cleanliness by autonomously collecting misplaced trash. It
employs a control policy integrated with the YOLOv5 [9]
detection algorithm to identify litter efficiently. The deploy-
ment of this system aims to not only improve cleanliness but
also foster a sustainable and well-ordered indoor environment.
We also proposed a custom dataset named TrashDet with
9 categories of common indoor trash with 1035 annotated
images to train our detection model. A comparative analysis
of three different detection models on the Jetson Nano led us
to select the YOLOv5s model as our trash detector, balancing
accuracy with processing efficiency. The robot finally achieved
an impressive overall success rate of 78.33% in litter rescue
task over 6 trash categories.

II. RELATED WORK

The background knowledge of this project can be summa-
rized into three areas: object detection, system control, and
inverse kinematics of the robotic arm.

A. Object Detection

With the development of computer vision and machine
learning, the field has evolved through various stages, from
early, handcrafted feature-based approaches to the state-of-the-
art deep learning models that dominate today. In this project,
we focus on deep learning methods for object detection. In
general, there are single-stage and two-stage object detectors.
R-CNN [10] is a representative work of two-stage methods,
using selective search to propose regions and a CNN to classify
them. Subsequent methods like Fast R-CNN [6] and Faster
R-CNN [11] improved this by integrating region proposals
and feature extraction into a more efficient pipeline. Single-
stage detectors like YOLO [5] achieved faster detection speeds
by bypassing the region proposal step, directly predicting
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bounding boxes and class scores in a single pass using anchors.
It has led to a series of follow-up works, which have been
widely used in real-time applications due to their speed,
though at the expense of some accuracy compared to two-
stage detectors. Building upon its predecessors, YOLOv5 [9]
employs a more modular architecture using the CSP network
for efficiency, integrates mosaic augmentation and CIoU for
enhanced training, and is optimized for deployment across
platforms via its PyTorch-based implementation. It is also the
first widely applied and deployed YOLO method. YOLOv8
[12] brings significant improvements in detection accuracy and
model efficiency by leveraging enhanced network architecture
and training techniques. YOLOv9 [13] further refines these
aspects by focusing on advanced post-processing methods and
novel training schemes to push the limits of accuracy and
speed in single-stage detectors. More recently, transformer-
based models have influenced object detection with DETR [7],
which introduced a novel, end-to-end approach using atten-
tion mechanisms, simplifying the detection pipeline. However,
transformer-based approaches require extensive computational
power, making them less feasible for edge computing due
to the large number of parameters. In this project, we chose
YOLOv5 [9] for object detection, as it provides a good balance
between accuracy and latency.

B. Control

Control systems play a pivotal role in the robot industry,
governing the behavior of robotic systems to achieve de-
sired outputs. Multiple control methods have been created
in decades to deal with complicated control systems, but
in this project, the traditional method is sufficient for our
robot. A very aged control method, Proportional – Integral
– Derivative (PID) control dates back to the late 19th and
early 20th centuries. The earliest form of PID control can
be traced to pneumatic and mechanical controllers used in
the process industries. The notable contribution to the PID
controller was made while working on automatic steering
systems for US Navy ships [14], observed the behavior of
helmsmen in controlling the ship and formulated the PID
principles based on these observations. In recent years, PID
control has been enhanced with adaptive and intelligent control
elements to handle nonlinearities and uncertainties in more
complex systems. These advancements continue to make PID
control a relevant and critical component in both traditional
and modern control systems across various industries [15].

Another classical control method is linear quadratic reg-
ulator (LQR) control. Originating in the 1960s, LQR was
formulated as part of the optimal control theory [16].In recent
years, adaptations of LQR for nonlinear systems and the
incorporation of robust and adaptive control strategies have
expanded its applicability. These developments ensure that
LQR remains relevant in contemporary control challenges,
including those encountered in autonomous vehicles and in-
telligent manufacturing systems [17].

Fuzzy control is a branch of control theory that utilizes
fuzzy logic to handle imprecision and uncertainty in complex

systems, a distinct departure from traditional binary logic
approaches. The concept of fuzzy control originates from the
theory of fuzzy sets, which was introduced in 1965 [18]. Fuzzy
sets were proposed as a means to mathematically represent
uncertainty and imprecision, providing a systematic way to
address problems in systems analysis, control, and decision-
making where traditional binary logic was inadequate. Today,
fuzzy control is explored in areas such as autonomous vehicles,
robotics, and smart grids. Its ability to handle ambiguity and
make decisions in real-time continues to make it a valuable
tool in the design of intelligent systems [19].

In this project, we need to adjust the motor-driven voltage
output according to the speed measured by motor encoders.
We finally chose PID as our control method because it can
be easily implemented, relatively faster, and can achieve high
accuracy with low computational cost without influencing the
inference speed of object detection.

C. Inverse Kinematics

In a synthesized review of kinematic analysis in robotics,
we explore essential methodologies from prominent schol-
arly articles. The forward kinematics employs the Denavit-
Hartenberg (DH) parameterization to simplify robotic joint
configurations, fundamental for robotic design and simulation
[20]. Additionally, geometric methods [21] for efficiently
computing joint angles for desired end-effector positions em-
phasize the enhancement of real-time application performance
in robotic systems. These pivotal studies underscore the critical
role of kinematic modeling in advancing the precision and
functionality of robotic manipulators. In our project, we use
this method which is originally supported by the robotic arm
to compute its end-effector pose.

III. METHOD

In this section, we present our method, which is divided into
several key components: overall architecture, trash detection,
control system, LR-Bot body, and environment setup.

A. Overall Architecture

1) Hardware Architecture: Fig. 1 depicts the comprehen-
sive hardware architecture of the LR-Robot. The system uti-
lizes the Jetson Nano and ESP32 as its controllers, with the
Jetson Nano serving as the primary controller. The sensors
of the robot include two-speed encoders, an ultrasonic sensor,
and a camera. The vehicle’s propulsion is powered by four TT
motors, which are operated by an L298N motor driver module.

The connection between the Jetson Nano and the motor
driver module involves two General-Purpose Input/Output
(GPIO) pins and two Pulse-Width Modulation (PWM) pins.
The motor’s power derives from the electrical potential differ-
ence; setting the GPIOs to low enables a higher PWM duty
cycle to increase motor power. Conversely, setting the GPIOs
to high reverses the logic, causing the motors to operate in
the opposite direction. All four TT Motors are connected to
the output ports of the motor driver module, with the ESP32
supplying power to the driver.



Fig. 1. Hardware architecture of the whole robot system.

The motor speed encoders function by measuring the ro-
tational speed through a slotted disc attached to the motors.
As the slots pass the encoders, they detect changes in light
and generate pulses on the output pin, which are counted by
the Jetson Nano to determine the motor’s speed. The encoders
receive their power directly from the Jetson Nano.

The ultrasonic sensor is connected to the ESP32, which
triggers the sensor via pulses on a trigger pin, prompting the
sensor to emit ultrasound. Upon receiving the reflected sound,
the sensor sends a pulse back to the echo pin, which is then
captured by the ESP32.

Furthermore, the Jetson Nano is linked to a camera via a
USB port, and it receives its power supply from the ESP32.
Communication between the two controllers is facilitated
through I2C. Additionally, servos and a pump integrated into
the robotic arm are connected to the ESP32, although these
components are not included in the diagram.

2) Software Architecture: Fig. 2 illustrates the software
architecture of the LR-Bot. The primary computing platforms
for the robot are the Jetson Nano and ESP32, while other
components function as peripheral devices.

The image acquisition process begins with the cam-
era capturing visuals that are subsequently processed
by YOLOv5 to detect objects and generate bounding
boxes. The positional deviation δ between the center of
these bounding boxes represented by a 4-element array
(xupperleft, yupperleft, xlowerright, ylowerright) and the image
(width w, height h) center is calculated using Eq. 1 to
determine the necessary angular adjustment for the robot’s

Fig. 2. Software architecture of the whole robot system.

orientation toward the target object.

δ =
xupperleft + xlowerright − w

w
. (1)

This deviation is then translated into differential speeds for
the left and right motors to facilitate directional changes.

The speed of the motors is monitored by encoders that
produce a pulse each time they detect changes in the light
passing through the slotted disc on the motor. The Jetson
Nano employs an external interrupt to track these pulses,
incrementing a count that quantifies the rotational distance
of the motor. The motor’s speed is computed by multiplying
this count by a coefficient within a specified time frame,
after which the count is reset. The desired speed is compared
with the actual motor speed using a Proportional-Integral-
Derivative (PID) controller to compute the appropriate PWM
signal, which adjusts the motor’s power output. This PID
regulation is crucial for adapting the robot’s speed to varying
load conditions, such as inclines, preventing stalling or reduced
speed under increased load.

The ESP32 controls the robotic arm. It generates PWM
signals to adjust the servo angles and operate the pump
and valve. Additionally, the ESP32 controls the ultrasonic
sensor by emitting pulses to initiate ultrasound emissions
and receive the resultant signal through an external interrupt.
The duration of the high-level voltage signal returned by the
sensor is directly proportional to the measured distance, which
the ESP32 calculates by applying a predefined coefficient to
the voltage duration. This integrated control and feedback
mechanism allows the ESP32 to accurately gauge and respond
to environmental distances.

B. Trash Detection

Our detection model is a fine-tuned YOLOv5s model. The
overall architecture is shown in Fig. 3. The model consists
of three parts: a CSPNet [22] backbone, a PANet [23] neck,
and an output YOLO [5] layer head. For technical details of
each submodule, we refer readers to the original papers. The
model outputs bounding boxes and classification scores for



each image frame, which are then passed to the control system
to guide the robot’s movements.

Fig. 3. Model architecture of YOLOv5 [9] from [24].

C. Control System

The litter-picking task is complex and cannot be accom-
plished in a single step. Therefore, we have divided the task
into eight distinct stages to form a task-specific control loop,
which is cyclically repeated. This control loop is depicted in
Fig. 4 and described as follows:

• Stage 0: The initial stage where the camera continuously
monitors for trash. The car remains stationary until a
piece of trash is detected. Upon sighting trash, the robot
approaches the first detected item and ignores subsequent
detections. The transition to the next stage occurs when
the ultrasonic sensor measures the distance to the trash
as being below a predetermined threshold.

• Stage 1: Upon entering this stage, the ESP32 instructs
the Jetson Nano to stop the vehicle. The robotic arm
then descends to grasp the trash, with the extent of the
arm’s reach and depth determined by the type of trash,
as communicated by the Jetson Nano. Completion of the
grasping task triggers the transition to Stage 2.

• Stage 2: When Jetson Nano knows that ESP32 has
finished the grabbing task, it will start turning the car to
find the trash bin. Left motors are set to move forward and
right motors move backward to turn the car in one place
without moving forward. When the trash bin appears in
the camera’s sight, Jetson Nano will tell the ESP32 that
they are in stage 3.

• Stage 3: Similar to Stage 0, but with the target now being
the trash bin. When ESP32 finds out that they are close
enough to the trash bin through the ultrasonic sensor, the
car will enter stage 4.

• Stage 4: This stage mirrors Stage 1 in mechanics but
involves the robotic arm extending slightly to ensure the

trash is deposited into the bin. The car remains stationary
during this process. Completion of the depositing task
prompts the ESP32 to advance to Stage 5.

• Stage 5: The car will go backward in stage 5. All the
motors will go backward. The condition for the next stage
is the distance between the car and the trash bin is smaller
than the threshold.

• Stage 6: The car searches for the red cube, designated as
the starting point. This stage operates similarly to Stage 2,
with the vehicle pivoting to locate the red cube. Spotting
the cube advances the system to Stage 7.

• Stage 7: This stage functions similarly to Stage 0, with
the red cube as the target. The ultrasonic sensor continues
to detect the distance between the car and the red cube.
If the distance is smaller than the threshold, the car will
enter stage 8.

• Stage 8: The concluding stage of the loop. The vehicle
turns and searches for the trash bin, preparing to re-enter
Stage 0 for continuous monitoring of the environment.
Once the trash bin is located, the vehicle automatically
resets to Stage 0, thus completing the control loop cycle.

Fig. 4. The control loop of the robot.

D. LR-Bot Body

Fig. 5 illustrates the overall design of the robot and the
placement of its hardware components. Fig. 5(a) shows the



Fig. 5. The LR-Bot.

ESP32, which is mounted on the rear of the robotic arm. Jetson
Nano is carried on the back of the car. The suction gripper
is also visible, extending from the body of the vehicle. The
camera is in front of the robotic arm. (b) presents a front view
where the camera is attached to the robotic arm, positioned
above an ultrasonic sensor. Additionally, the encoders are
affixed to the first panel of the chassis. In (c), the motor driver

module is located on the vehicle’s first panel, with the Jetson
Nano situated directly above it on the second panel. Finally,
(d) reveals the underside of the vehicle, where two of the four
front motors are equipped with encoders.

E. Environment Setup

Fig. 6. The environment setup of the experiment.

The environment setup is shown in Fig. 6. The setup
includes our LR-Bot collecting trash from the floor and de-
positing it into a bin located on the opposite side of the testing
area. A red cube serves as the designated starting point for the
robot. This indicates that after completing each collection task,
the robot must return to the red cube, reorient itself towards
the trash bin, and monitor the area for any additional trash
that may be discarded onto the floor.

IV. EXPERIMENTS

In this section, we introduce our custom dataset, detail the
implementation of both software and hardware, and present
the results of our experiments along with relevant analysis.

A. Dataset

To test our robot, we set up the testing environment men-
tioned above within our living room for both testing and data
collection (see Appendix A). For this task, we built a Trash De-
tection (TrashDet) dataset. Our dataset comprises 11 classes:
envelope, fruitpeel, paperbag, paperball, paperbox, plasticbag,
plasticbottle, plasticcup, redcube, tincan, and trashbin. The
trashbin class identifies the target trash bin, while the redcube
class indicates the robot’s starting point. These classes were
selected based on their frequency of occurrence in daily life.
The distribution of instances for each class is illustrated in
Fig. 10. The total dataset consists of 1035 images and 2632
annotations. The distribution of the training and validation sets
is presented in Table I.

B. Implementation Details

1) Object Detection: For this project, we chose YOLOv5s
[9] as our trash detector. We tested and deployed YOLOv5
[9], YOLOv8 [12], and DETR [7] on the Jetson Nano, and
the results are shown in Table II. Note that the inference time



TABLE I
DISTRIBUTION OF THE TRAINING, TESTING, AND VALIDATION DATASETS.

Split # Samples

Training 833
Validation 202

was measured using TensorRT engines of all the three models.
Although the current state-of-the-art detector is YOLOv9 [13],
its authors did not release a small model, and the existing ver-
sions are too large to run on the Jetson Nano. Hence, we used
YOLOv8 [12] and DETR [7] for comparison. DETR [7] is a
transformer-based object detector with more parameters and a
larger input size compared to the YOLO models. We included
DETR [7] to make our comparison more comprehensive.
Based on the results, YOLOv5 [9] demonstrates the fastest
inference speed at approximately 75ms per image, with the
smallest number of parameters. In contrast, YOLOv8 [12]
requires nearly double the inference time of YOLOv5 [9] for
a single image. DETR [7] takes the longest time, significantly
exceeding our latency requirements. Despite these differences,
YOLOv5 [9] achieves a comparable mean average precision
across IoU thresholds from 0.5 to 0.95, relative to the other
models. Taking into account the latency and accuracy require-
ments of our task, we have selected YOLOv5 [9].

The YOLOv5 model was trained for 500 epochs with a
starting learning rate of 0.01, a weight decay of 0.0005, and
a batch size of 16. We used the Adam optimizer [25] for all
experiments. Our model was fine-tuned on our dataset using
the YOLOv5s weights pretrained on COCO [26] dataset. The
training plot of YOLOv5s is shown in Fig. 7.

After fine-tuning, the model was converted into a TensorRT
engine using the API provided by [27]. We also quantized the
model to FP16 during the conversion process to the TensorRT
engine, as this approach increases inference speed, and our
accuracy requirements are not exceedingly stringent. The fine-
tuning was conducted on an RTX 4070 Ti, and inference was
executed on the Jetson Nano.

For the implementation details of the other two models,
please refer to Appendix B.

TABLE II
COMPARISON OF YOLOV5, YOLOV8, AND DETR ON SEVERAL

PERFORMANCE METRICS.

Model Input Size # of Params Inf. Time mAP50-95

YOLOv5 [9] 640x640 7.2M 75ms 0.933
YOLOv8 [12] 640x640 11.2M 132ms 0.949

DETR [7] 800x1066 41M 1215ms 0.883

2) Hardware: The hardware list is shown in Table III. The
installation can refer to Fig. 5.

The camera should be mounted slightly downward to en-
hance floor visibility and minimize interference from the
surrounding environment. The robotic arm is positioned at
the front of the vehicle. Due to the considerable weight of

TABLE III
COMPONENT LIST.

Component #

Jetson Nano 1
ESP32 Micro Controller 1

Robotic Arm 1
TT Motor 4

Wheel 4
Slotted Disc 4

HIKVISION DS-E12a Camera 1
HC-020K Motor Speed Encoder 2

HC-SR04 Ultrasonic Sensor 1
L298N Motor Driver Module 1

Plastic Panel (Car Body) 2
Micro USB Cable 1

USB-C Cable 1
12V Battery 1

M3 Screw and Nut Several
Dupont Wire Several

the arm, encoders are installed on the front motors to prevent
the rear motors from idling. Dupont wires are routed through
the car panel for organized cable management. Each motor is
connected with one black and one red wire. Given that the
L298N motor driver module contains only two sets of output
ports, with each set comprising two output pins, wires of the
same color on the same side must be soldered together to
secure the connections and prevent detachment. Excess wire
length should be either tied or affixed to the vehicle body to
avoid entanglement in the wheels.

C. Results

In this section, we report the experimental results of our
task both in parts and as a whole. The complete task involves
litter detection, picking, and dropping. We also present results
on detection and picking task in two subsections.

1) Overall Results: To enhance the comprehensiveness of
our experiment, we randomly select 2 objects from each
category and conduct 10 runs for each object. Consequently,
we have performed a total of 180 experiments for the com-
plete task, encompassing recognition, picking, dropping, and
returning to the standby state. The overall experimental results
are presented in Table IV.

TABLE IV
EXPERIMENTAL RESULTS OF THE COMPLETE TASK.

Category # Success # Failure Success Rate (%)

Envelope 14 6 70.00
Fruitpeel 0 20 0.00
Paperbag 17 3 85.00
Paperball 2 18 10.00
Paperbox 18 2 90.00
Plasticbag 13 7 65.00
Plasticbottle 17 3 85.00
Plasticcup 0 20 0.00
Tincan 15 5 75.00
Overall 96 84 53.33

It is evident from the table that three categories of trash,
namely fruitpeel, paperball, and Plasticcup, exhibit an almost



Fig. 7. Training plots of YOLOv5 model during 500 epochs.

0% success rate. This outcome is expected due to the nature
of the gripper used, which is a suction gripper. Such a gripper
necessitates seamless contact with the target object to execute
successful suction. However, objects from these three classes
possess uneven surfaces, making them challenging to grasp
using this gripper. For this issue, which stems not from
our control system or detection algorithm, but rather from a
mechanical limitation, we opted to refine the evaluation trash
categories to the following six: envelope, paperbag, paperbox,
plasticbag, plasticbottle, and tincan. With this adjustment, we
present the refined results for further evaluation in Table V. In
general, for one complete loop of the litter-picking task (i.e.,
start from the red cube,..., go back to red cube), the average
execution time is approximately 57 seconds.

TABLE V
REFINED EXPERIMENTAL RESULTS OF THE COMPLETE TASK.

Category # Success # Failure Success Rate (%)

Envelope 14 6 70.00
Paperbag 17 3 85.00
Paperbox 18 2 90.00
Plasticbag 13 7 65.00
Plasticbottle 17 3 85.00
Tincan 15 5 75.00
Overall 94 26 78.33

From the refined results, it’s evident that the overall success
rate of our method stands at 78.33%, with the highest success
rate of 90.00% observed in the class paperbox, and the lowest
success rate observed in the class plasticbag. This overall
success rate aligns with our expectations, demonstrating the

robust performance of the system in testing environments.
For objects with rigid body properties and smooth surfaces,
such as paper boxes, the suction gripper excels. However, for
objects like plastic bags, characterized by deformable shapes
and uneven surfaces, grasping poses a greater challenge for
the gripper. For further insights on grasping, please refer to
Section IV-C3.

2) Trash Detection: The detection experiment results of the
best model during training are shown in Table VI. The overall
detection mAP50 reached 99%, and the mAP50-95 achieved
93.9%, meeting our preset requirements for the detection task.
Among all classes, paperball had a comparatively low mAP50-
95, which was expected since paper balls and white plastic
bags were very similar visually. Trashbin had the highest
mAP50-95, at 0.985, as it contained the largest number of
training instances among all classes. A visualization of some
detection results is shown in Fig. 8. From the visualization,
we can see that the objects are all correctly detected with
very high classification scores and accurate bounding boxes.
These results, along with the numerical analysis, imply that
our detection model is quite robust and accurate. Additionally,
the results of detection during real-world experiments are
illustrated in Table VII under the refined settings. This result
is expected as we collected all our training data in the same
testing scene, and the test objects are all inside our training
domain.

3) Grasp: We further elaborate on the grasp task to demon-
strate its significance in determining the overall success rate.
Following the refined categories, we report the results of the
grasp task in Table VIII.



TABLE VI
EXPERIMENT RESULTS OF FINETUNED YOLOV5 MODEL ON TRASHDET
VALIDATION SET, W.R.T. PRECISION, RECALL, MAP50 AND MAP50-95.

Class Instances P R mAP50 mAP50-95

All 497 0.984 0.980 0.990 0.933
Envelope 31 0.999 0.968 0.994 0.892
Fruitpeel 39 0.996 1.000 0.995 0.919
Paperbag 16 0.970 1.000 0.995 0.955
Paperball 67 1.000 0.955 0.987 0.898
Paperbox 55 1.000 0.996 0.995 0.961
Plasticbag 54 0.928 0.981 0.981 0.928
Plasticbottle 49 0.976 1.000 0.990 0.925
Plasticcup 22 1.000 0.903 0.991 0.901
Redcube 15 0.987 1.000 0.995 0.964
Tincan 52 0.977 0.981 0.968 0.936
Trashbin 97 0.988 1.000 0.995 0.985

Fig. 8. YOLOv5 detection results on TrashDet dataset.

From the table, it’s evident that there’s minimal difference
compared to the overall task success rate, with a 5% increase.
This difference is primarily attributed to some instances of
out-of-bin trash drops. However, we refrain from reporting
the experimental statistics on the drop task here, as it is
highly correlated with the picking task. This correlation stems
from the fact that if picking fails, dropping must inevitably
fail as well. Upon comparison with Table V and VII, it
becomes apparent that the success rate of picking holds the
most significant overall impact on the complete task. This
observation is supported by the nearly 99% success rate in
detection, and few out-of-bin droppings caused by inaccurate
detection of the ultrasonic sensor.

TABLE VII
REFINED EXPERIMENTAL RESULTS OF THE DETECTION TASK.

Category # Success # Failure Success Rate (%)

Envelope 18 2 90.00
Paperbag 19 1 95.00
Paperbox 20 0 100.00
Plasticbag 20 0 100.00
Plasticbottle 20 0 100.00
Tincan 20 0 100.00
Overall 117 3 97.50

TABLE VIII
REFINED EXPERIMENTAL RESULTS OF THE GRASP TASK.

Category # Success # Failure Success Rate (%)

Envelope 17 3 85.00
Paperbag 17 3 85.00
Paperbox 19 1 95.00
Plasticbag 14 6 70.00
Plasticbottle 18 2 90.00
Tincan 15 5 75.00
Overall 100 20 83.33

V. DISCUSSION

In general, we obtained an overall success rate of 53.33%
on the 9 classes of trash and a success rate of 78.33% on
the refined 6 classes. From our analysis in Section IV-C, we
found that the grasping task significantly impacts the overall
success of our experiment. This is primarily because the vision
algorithm is extremely robust, exhibiting almost no failures
that could lead to incorrect or missed detections. Meanwhile,
the dropping task, which is correlated to picking, proves to be
error-tolerant; we can consistently deposit trash into the bin
by extending the robotic arm. In the following parts, we will
provide further analysis on runtime and discuss some specific
failure cases.

In our project, the average duration of a complete control
loop is approximately 57 seconds, with the majority of this
time consumed by the car’s movement towards the object. This
prolonged duration is primarily attributable to the following
factors:

• Battery: The battery is not stable during the experiment.
The output voltage fluctuates as the battery depletes, re-
sulting in inconsistent power delivery to the motors. This
instability can impede the vehicle’s ability to maintain
smooth motion at high speeds.

• Motor: The TT motors employed are insufficiently pow-
erful for the vehicle’s load requirements. The vehicle was
not initially designed to support heavy loads, such as a
robotic arm. During experiments, the added weight of the
arm significantly lowered the vehicle’s front, causing the
rear motor to idle and the front motor to stall. Under
these conditions, the motors fail to achieve high speeds.

• Speed Measuring System: The slotted disc mounted on
the motor features only 20 slots per revolution, allowing
the encoder to detect a maximum of 40 pulses per
revolution. Consequently, this limitation necessitates an



extension of the intervals between PID calculations, as the
encoder does not acquire sufficient speed data in a brief
period. The lack of precise speed measurements hinders
the car’s ability to control speed accurately and execute
precise maneuvers at elevated speeds.

During testing, there are three major causes of failures:

• Detection Failure: There are instances where the trash
may either be thrown out of the camera’s field of view
or detected with confidence below the predetermined
threshold. In such cases, the vehicle remains stationary
until the trash is repositioned within sight. Additionally,
during the approach to the trash, if it becomes close
enough to exit the camera’s field of view yet remains
beyond the detection range of the ultrasonic sensor, the
vehicle will halt and remain in Stage 0.

• Suction Failure: Suction failure represents the most
frequent malfunction encountered in this project. As
mentioned above, we use a suction gripper on the robotic
arm to pick up the trash. If the trash object cannot make
seamless contact with the gripper, it cannot be picked up.
Certain types of trash, such as fruitpeel, plasticcup, and
paperball, pose significant challenges for suction-based
retrieval due to their shapes and materials.
Additionally, the gripper requires a specific pressure
to achieve seamless contact with the object. However,
certain materials, such as tincan and plasticbottle, can
easily be displaced by the pressure applied by the gripper.
Consequently, precise tuning of the end-effector’s pose is
essential to ensure effective pickup and prevent displace-
ment of the target objects.

• Localization Failure: This type of failure frequently
occurs with thin objects, such as envelopes. As previously
discussed, an ultrasonic sensor is utilized to measure the
distance between the object and the vehicle. Efforts have
been made to position the sensor as low as feasible.
However, the vehicle’s potential to tilt forward during
motion occasionally causes the sensor to angle slightly
downward. Consequently, if the sensor is installed too
low, its detection capabilities may be impeded by the
floor. Given the minimal thickness of objects like en-
velopes, the ultrasonic sensor often fails to recognize
them, resulting in the vehicle inadvertently bypassing
these items.

Obviously, suction failure is the major cause of the complete
task, as not all the objects can be grasped using this simple
suction gripper. To accommodate this issue, some other grip-
pers, such as parallel or jaw grippers, could be used along with
grasp generators to plan more executable and robust grasps.

VI. FUTURE WORK

In our project, we comprehensively explore the feasibility
of using raw RGB images as input for an autonomous litter-
picking robot. With an advanced detection algorithm and
closed-loop control logic, our robot has successfully performed

the given tasks in our controlled environment. However, our
method’s generalizability remains limited. To enhance the
generalizability of the detection model, it would be beneficial
to gather a larger dataset that encompasses a wider variety
of scenes and conditions. Additionally, incorporating depth
images would improve the accuracy of measuring the distance
between the object and the gripper, thus enabling more precise
grasp planning. This feature was not included in our current
system due to budget constraints. Extending this concept to
public scenarios, a more powerful robotic arm and gripper
could be employed to autonomously collect trash, reducing
the reliance on human labor.

VII. CONCLUSION

In this project, we developed an autonomous litter-picking
robot, LR-Bot, which integrates a Jetson Nano with a 4
DoF robotic arm for indoor litter-picking task supported by
a 4WD car base. We designed a comprehensive task logic and
control loop to support its operations. A custom dataset called
TrashDet, containing nine common indoor trash categories,
was collected to train various detection models, including
YOLOv5, YOLOv8, and DETR. These models were converted
to TensorRT engines for real-time inference on the Jetson
Nano, with YOLOv5 emerging as the optimal solution due to
its 12 FPS inference speed and high accuracy. In real-world
experiments, the LR-Bot achieved an overall success rate of
53.33% across all nine trash categories and an impressive
78.33% across the refined six graspable trash categories.

In summary, the design, detection algorithm, hardware, and
control loop were all rigorously tested both individually and in
combination. The results demonstrate that our robot is indeed
capable of efficiently handling the autonomous indoor litter-
picking task within our testing environment under an efficient
workflow.

However, we also identified some limitations in our robot’s
design. The suction gripper struggles with objects that have
uneven surfaces, and the accuracy of distance estimation
could be enhanced by incorporating depth information using a
depth camera. Furthermore, the potential upgrades to a more
robust battery and motor, along with evaluating other grippers
with different mechanical structures, could broaden the range
of trash categories the robot can effectively handle. These
improvements would make the LR-Bot even more versatile
and efficient in tackling various litter-picking challenges and
generalizing to more use cases.
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APPENDIX

A. Data Collection

To simplify our testing environment, we conducted the
experiments in the living room of our apartment. All training
samples were captured within this environment to minimize
the domain gap between training and testing. Initially, we col-
lected 453 images to train our model, but we found the detec-
tion results were vulnerable to environmental changes, such as
variations in background and lighting conditions. This was pri-
marily because the training samples were collected with a fixed
background and camera angle. To enhance the model’s per-
formance and generalizability, we collected an additional 582
images from diverse backgrounds and camera angles. Eventu-
ally, we created the TrashDet dataset and achieved excellent
detection results with our model. Some instances from our
dataset are shown in Fig. X. We used Roboflow for data anno-
tation and dataset export, generating datasets in formats com-
patible with YOLOv5 and YOLOv8 as well as the standard
COCO [26] format for DETR. Our TrashDet dataset is pub-
licly available at https://universe.roboflow.com/trashdetection-
ubntx/trashdet Some samples of our TrashDet are depicted in
Fig. 9.

B. Implementation Details of YOLOv8 and DETR

1) YOLOv8: For this experiment, we used YOLOv8s
model. The experiment stopped early after 365 epochs due
to a lack of improvement for 100 consecutive epochs. For
training, we used an initial learning rate of 0.01 with a weight
decay of 0.0005. The batch size was 16, and AdamW [28]
served as the optimizer. The final overall results are presented
in Table IX, and the training plot is shown in Fig. 11. The
training took approximately 1.5 hours on an RTX 4070 Ti.
Notably, the model achieved a mAP50-95 that is 1.6% higher
than YOLOv5, which was expected.

2) DETR: We chose DETR with a ResNet50 [29] backbone
to accommodate the Jetson Nano. The structure of the trans-
former is illustrated in Table X. For finetuning this model, we
used a learning rate of 0.0001 and a weight decay of 0.0001.
AdamW [28] was employed for optimization, and we clipped
the gradients at 0.1 during training. The model achieved a
mAP50-95 of 0.89, so we stopped training after 300 epochs.
The results on the TrashDet validation set are shown in Table
XI.
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Fig. 9. Some samples in TrashDet dataset.
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Fig. 10. Distribution of labelled instances in each class.

C. Some Improvements for TensorRT Inference

At the outset of our experiment, we initially attempted to
craft a TensorRT inference script from scratch. However, the
inference speed of our YOLOv5s model was merely 1.8 FPS.
We subsequently explored two different GitHub implemen-
tations: one by OpenJetson and another that utilizes Docker
by alxmamaev. Unfortunately, the implementation from these

TABLE IX
EXPERIMENT RESULTS OF FINETUNED YOLOV8 MODEL ON TRASHDET

VALIDATION SET, WITH REGARD TO PRECISION, RECALL, MAP50 AND
MAP50-95.

Class Instances P R mAP50 mAP50-95

All 497 0.980 0.983 0.988 0.949
Envelope 31 0.965 0.968 0.976 0.911
Fruitpeel 39 0.994 1.000 0.995 0.946
Paperbag 16 1.000 0.992 0.995 0.969
Paperball 67 1.000 0.970 0.991 0.929
Paperbox 55 1.000 0.998 0.995 0.980
Plasticbag 54 0.908 0.981 0.979 0.941
Plasticbottle 49 0.956 1.000 0.995 0.939
Plasticcup 22 1.000 0.923 0.973 0.901
Redcube 15 1.000 1.000 0.995 0.991
Tincan 52 0.972 0.981 0.982 0.947
Trashbin 97 0.986 1.000 0.993 0.987

TABLE X
TRANSFORMER HYPERPARAMETER SETTING.

Parameter Value

enc_layers 6
dec_layers 6
dim_feedforward 2048
hidden_dim 256
dropout 0.1
nheads 8
num_queries 100

two methods still has limited inference speed. Ultimately, we
adopted a highly-starred repository and successfully integrated
our YOLOv5s model using a multi-threading approach pro-

https://github.com/OpenJetson/tensorrt-yolov5/tree/main
https://github.com/alxmamaev/jetson_yolov5_tensorrt/


Fig. 11. Training plots of YOLOv8 model during 365 epochs.

TABLE XI
EXPERIMENT RESULTS OF FINETUNED DETR W.R.T. AVERAGE PRECISION

AND RECALL OVER DIFFERENT IOU AND AREA CONDITIONS.

Metric IoU Area maxDets Value

AP 0.50:0.95 all 100 0.898
AP 0.50 all 100 0.977
AP 0.75 all 100 0.970
AP 0.50:0.95 small 100 0.574
AP 0.50:0.95 medium 100 0.829
AP 0.50:0.95 large 100 0.939
AR 0.50:0.95 all 1 0.850
AR 0.50:0.95 all 10 0.924
AR 0.50:0.95 all 100 0.924
AR 0.50:0.95 small 100 0.700
AR 0.50:0.95 medium 100 0.869
AR 0.50:0.95 large 100 0.953

vided by [27].

D. PID Parameter Tuning

TABLE XII
PID PARAMETER SETTINGS.

Parameter Value
Left Right

Proportional 20 30
Integral 1

Derivative 1

Lower Bound Higher Bound

Integral Saturation -20 60
Duty 0 100

PID parameter settings are shown in Table XII. The velocity
is computed at intervals of 200 ms. Due to the limited number
of pulses received from the slotted disc attached to the motor,
the maximum achievable speed ranges between 7 and 8 units.
When the proportional gains are too low, the PID controller
cannot achieve a 100% duty cycle. Although the integral
component can help reach full duty, the imprecision in speed
measurement often hampers the ability of the integral term
to adequately decrease, leading to excessive motor speeds
even when the target velocity is lower, thereby introducing
significant system latency. Consequently, it is imperative to set
a sufficiently large proportional gain. The higher proportional
gain on the right motor compensates for its lower strength
compared to the left motor.

Furthermore, limits on the integral term are essential; we
have set the upper saturation limit to 60 and the lower limit
to -20. This configuration prevents any further increase in the
integral term once it has assisted in achieving a 100% duty
cycle. The lower limit serves a similar purpose, preventing
the integral term from contributing negatively when it is not
needed.

We also implement an integral reset mechanism. Whenever
the actual speed aligns with the target speed, the integral term
is reset to zero. This adjustment ensures that the integral term
does not remain elevated after the speed has been appropriately
regulated.

E. Motor Speed Tuning

As described in the paper, YOLOv5 generates bounding
boxes, whose centers are compared with the center of the



TABLE XIII
SPEED PARAMETER SETTINGS.

Parameter Value
left right

Upper Bound 0.4
Goal Speed 5 3

Middle Bound 0.2
Goal Speed 3 2

Lower Bound 0.1
Goal Speed 2 2

Minus Upper Bound -0.4
Goal Speed 1 4

Minus Middle Bound -0.2
Goal Speed 1 5

Minus Lower Bound -0.1
Goal Speed 2 5

Straight Goal Speed 2 3

image to determine the angular adjustment required for the
vehicle. To enhance the precision of these adjustments and
prevent the vehicle from over-rotating and potentially losing
sight of the target, we have established six distance thresholds.
The corresponding goal speeds are adjusted based on these
thresholds, as detailed in Table XIII.

A positive distance indicates that the object is located to
the right of the image center, necessitating a rightward turn to
align the vehicle’s orientation with the object. Conversely, a
negative distance implies that the object is to the left, requiring
a leftward turn.

F. End-Effector Pose Tuning

TABLE XIV
END-EFFECTOR PARAMETER SETTINGS.

Trash Name Y Coordinates Adjustment Z Coordinates Adjustment

Envelope 30 240
Fruitpeel 10 220
Paperbag 50 235
Paperball 5 220
Paperbox 10 220
Plasticbag 10 220
Plasticbottle 6 185
Plasticcup 10 220
Redcube 10 220
Tincan 20 220
Trashbin 10 220

The end-effector pose tuning parameters are shown in
Table XIV. The Y coordinates represent how long the arm
should stretch to pick the object. The best pick point is the
center of the object. But the length of the objects is not the
same. For example, the arm needs to fetch farther to reach the
center of paperbag, but if the arm stretches the same distance
when it picks a tincan, it may miss the pick. So, this coordinate
should be different for different objects.

The Z coordinates are the depth at which the arm picks up
an object. The height of the objects is different. If the arm

goes down too much, the head of the car may be pushed up,
which influences its pose. If the arm goes down too little, it
may not reach the object.

G. Contribution

The authors contributed equally to this project. The detailed
contributions are summarized in Table XV.

TABLE XV
DETAILS ON CONTRIBUTION.

Task Tianyi Xu Yuan Qing

Idea Formulation ! !

Proposal ! !

Robot Design ! !

Data Collection ! !

Data Labeling ! !

Test Environment Setup ! !

Detection Algorithm&Experiments !

Robot Assemble !

Control Loop Design ! !

Control Parameter Finetuning !

On-site Experiments ! !

Demo Video !

Final Presentation ! !

Report ! !

Github Repo Structure !
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