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Abstract
In the realm of Reinforcement Learning (RL), De-
cision Transformer (DT) approaches have shown
promise across various control tasks. However,
a significant challenge lies in their predominant
reliance on offline training, making direct online
application of DT methods less feasible. Notably,
online methods generally employ an actor-critic
framework. In response to the difficulties en-
countered in online DT training, we introduce
SACFomer, an innovative online RL framework
that integrates sequence modeling. SACFomer
uniquely incorporates a DT into the actor net-
work within an actor-critic architecture. This ap-
proach has yielded competitive results in vari-
ous OpenAI Gym environments, outperforming
several baseline methods. An ablation study fur-
ther elucidates the benefits of sequence modeling
and investigates the impact of sequence length.
The code of our project is available at https:
//github.com/XTTTZ/SACFormer.

1. Introduction
Recently , transformer architecture (Vaswani et al., 2017)
has brought about a revolutionary change in deep learn-
ing (DL), particularly in the realms of natural language
processing (NLP) (Devlin et al., 2018; Floridi & Chiriatti,
2020) and computer vision (CV) (Dosovitskiy et al., 2020;
Han et al., 2022). This paradigm shift is attributed to the
transformer’s unparalleled proficiency in modeling com-
plex, high-dimensional distributions of semantic concepts
on a large scale. Its unique structure, characterized by self-
attention mechanisms, allows for more efficient and effec-
tive handling of sequential data compared to traditional
models. Inspired by the applications of transformer architec-
ture in NLP and CV, the Decision Transformer (DT) (Chen
et al., 2021) has been designed, tailoring this technology
to the realm of RL through reconceptualizing RL as a se-
quence modeling problem. DT enables the exploitation of
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the transformer architecture’s inherent proficiency in pro-
cessing sequential data, adapting it for decision-making
tasks.

Compared to traditional temporal difference (TD) learning
(Sutton & Barto, 2018) based approaches, DT based meth-
ods have demonstrated impressive performance across a
variety of offline reinforcement learning (RL) benchmarks
(Li et al., 2023; Lee et al., 2022; Meng et al., 2021; Xu et al.,
2022). However, a theoretical understanding of how DT
operates in RL remains limited. This is particularly perti-
nent in the context of a Markov Decision Process (MDP),
where the relevance of past experiences to the probability
density of the current policy is not inherently necessary. In
addition, the majority of DT based methods are confined
to offline RL. Offline RL trains RL algorithms on a fixed
dataset of previously collected experiences, without further
interacting with the environment (Fu et al., 2020; Levine
et al., 2020; Prudencio et al., 2023). This focus on offline RL
presents several drawbacks, including potential overfitting
to the training data, limited exploration of the environment,
and challenges in generalizing to unseen scenarios (Kumar
et al., 2019; Agarwal et al., 2020).

Given the compelling performance exhibited by DT, our
goal is to address and mitigate the inherent limitations of
their offline nature by exploring new methodologies. In
contrast to previous approaches that involve initial offline
pretraining followed by online fine-tuning (Xie et al., 2022;
Meng et al., 2021), we aim to investigate the feasibility
of developing a purely online RL architecture based on
DT. This exploration intends to harness the strengths of DT
while effectively adapting it for dynamic, real-time learning
environments.

In this paper, we elucidate that the goal can be attained
by adopting an actor-critic-like structure, seamlessly inte-
grated with DT. To model an offline RL schema using DT,
we examine the structures of traditional actor-critic meth-
ods, which have established well-defined theoretical bounds
in policy optimization (Lillicrap et al., 2015a; Mnih et al.,
2016; Kumar et al., 2020; Haarnoja et al., 2018b; Fujimoto
et al., 2018). Notably, a significant portion of recent actor-
critic methods are based on the Soft Actor-Critic (SAC)
framework (Haarnoja et al., 2018b). Building upon this,
we propose a novel online RL approach SACFormer that
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adapts the SAC architecture, integrating DT within the actor
network to enhance its performance and applicability in on-
line learning scenarios. To the best of our knowledge, there
is no existing research on purely online DT that have been
integrated with actor-critic architecture. Our contributions
can be summarized as follows:

• As far as we know, we are the first to define and tackle
pure online RL tasks using transformer architecture.

• We design a novel online RL framework that inno-
vatively amalgamates sequence modeling capabilities
with SAC.

• We present empirical results that show that SACFormer
achieves competitive results in Open AI Gym (Brock-
man et al., 2016) environments compared with other
baseline methods.

2. Related Work
2.1. Online RL

Online RL is an important branch in the field of machine
learning that mimics the process by which humans or ani-
mals learn to make decisions by interacting with their en-
vironment. In this process, an agent continuously adjusts
its behavioral strategy by performing actions and receiving
feedback (reward or punishment) from the environment to
maximize long-term rewards (Zhao et al., 2023).

This approach is opposed to offline RL, which collects data
while the intelligent body interacts with the environment
and then trains on this data, rather than learning directly
from real-time environmental interactions. The advantage
of online reinforcement learning is its immediacy and con-
tinuity (Ball et al., 2023). Instead of waiting for a large
amount of data to accumulate before batch learning, agen-
cies learn from each interaction with their environment in
real time, which allows them to adapt to changes in the
environment more quickly. In addition, this type of learning
reduces the reliance on large amounts of historical data, and
agencies can make effective decisions in unforeseen new
environments.

Online RL is efficient for its sample efficiency. Online RL
can efficiently utilize off-policy data for fine-tuning, allow-
ing agents to learn from a continuous stream of experiences.
This enhances sample efficiency, which is vital in environ-
ments where data collection is expensive or difficult (Liu
et al., 2023). Other than that, it balances exploitation and
exploration pretty well. Online RL provides methods for
more intelligent exploration strategies beyond traditional
approaches like ϵ-greedy, improving the ability to explore
action spaces in complex environments and preventing the
agent from getting stuck in local optima (Eysenbach et al.,

2020). Plus, it keeps learning and refining itself from vi-
sual observations in the environment. (Laskin et al., 2020)
proposes an online RL method that incorporates techniques
like data augmentation to improve both the data efficiency
of learning and generalization to new environments, crucial
for tasks that require perceiving high-dimensional inputs.
Compared with previous works, we focus on forming an
online RL framework in the context of sequence modeling
in this project.

2.2. Transformer

The original version of Transformer was designed to im-
prove machine translation(Vaswani et al., 2017). The Trans-
former relies on an attention mechanism to draw global de-
pendencies between input and output, breaking away from
the traditional recurrent or convolutional networks. This de-
sign enables the model to capture long-range dependencies
in input data. The Multi-head self-attention feature allows
the model to process information from different representa-
tion subspaces at different positions, enhancing its ability to
understand various aspects of the input.

To expand Transformer to more realms in NLP, the
Bidirectional Encoder Representations from Transformers
(BERT)(Devlin et al., 2018) was introduced. BERT’s key
innovation lies in its ability to consider the full context of
a word by looking at both the left and the right side of the
word in a text. This bidirectional context understanding
contrasts with previous models that typically processed text
in one direction(Peters et al., 2018; Radford & Narasimhan,
2018). BERT is built upon the Transformer architecture,
specifically utilizing its encoder mechanism. The Trans-
former model, known for its attention mechanism, allows
BERT to weigh the importance of different words in the
context effectively.

The Vision Transformer (ViT) was introduced to split the im-
age into small patches and feeding into Transformer model
(Dosovitskiy et al., 2020). Facebook AI came up with Data-
efficient Image Transformers (DeiT) (Touvron et al., 2021).
DeiT optimizes for data efficiency, training Transformers
effectively with less data and a novel distillation strategy.
Swin Transformer (Liu et al., 2021) is ahierarchical Trans-
former architecture with variable-sized windows for self-
attention, making it more adaptable to images of varying
sizes and resolutions. Convolutional vision Transformers
(CvT) (Wu et al., 2021) combines the benefits of CNNs
and Transformers by introducing convolutional operations
into the Transformer architecture, enhancing local feature
capture while retaining long-range dependencies.

The Decision Transformer, an innovative approach that
applies transformer-based architectures, typically used in
natural language processing, to reinforcement learning
tasks(Chen et al., 2021). This model represents a signifi-
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cant departure from traditional reinforcement learning meth-
ods by treating the reinforcement learning problem as a
sequence modeling task. The Decision Transformer takes in
a sequence of states, actions, and rewards, and predicts the
next action, conditioned on a desired return or reward to go.
Trajectory Transformer (Janner et al., 2021) uses Transform-
ers to model entire trajectories in the reinforcement learning
context, focusing on accurate behavioral cloning and offline
policy optimization. GPT for Finance (GPT-f) (Wallbridge,
2020) adapts the Decision Transformer approach for finan-
cial decision-making tasks, using Transformers to predict
financial actions and strategies based on historical financial
data. Compared with other DT based methods, we focus on
applying DT to online RL under an actor-critic framework.

2.3. Actor-Critic

Actor-Critic is a reinforcement learning algorithm that com-
bines two main reinforcement learning methods: Policy
Gradient and Value Function Approximation. In this frame-
work, the ”actor” is responsible for learning what actions to
take, while the ”criterion” evaluates how good or bad these
actions are, i.e., gives an estimate of their value(Haarnoja
et al., 2018a). This structure allows the algorithm to effi-
ciently balance the trade-off between exploration (trying
new actions) and exploitation (utilizing the best known ac-
tions).

In the Actor-Critic approach, policy optimization is per-
formed in a continuous and progressive manner, which en-
sures the stability of the learning process. This approach
reduces performance fluctuations due to policy changes,
which is especially important in long-term reinforcement
learning tasks. A stable learning process allows the algo-
rithm to gradually adapt to changes in the environment and
continuously improve its strategy(Achiam, 2018).

The Actor-Critic algorithm places special emphasis on the
efficient use of samples in the learning process. Through
the experience replay mechanism, the algorithm can learn
from past experiences rather than relying only on recent
data. This approach improves the efficient use of data and
speeds up the learning process, especially in complex envi-
ronments(Andrychowicz et al., 2018).

Another key feature of the Actor-Critic method is that it is
applicable to various types of action spaces, both discrete
and continuous. This allows it to be flexibly applied to
different types of reinforcement learning problems, from
simple games to complex robot control. In continuous action
spaces, the Actor-Critic method is particularly effective
because it is able to output a continuous action value directly,
rather than selecting from a limited set of actions(Haarnoja
et al., 2018b).

The combination of the Actor-Critic approach with deep

learning techniques makes it possible to process high di-
mensional input data such as images and complex sensor
data. Deep learning networks (e.g., convolutional neural
networks or recurrent neural networks) are often used as part
of the Actor and Critic modules to process these complex
inputs. This integration allows Actor-Critic algorithms to
learn effective strategies in visually complex environments.
Most actor-critic methods are predominantly dependent on
deep neural networks, with limited exploration into the use
of transformer architectures. In this project, we augment the
actor network by integrating a transformer model, thereby
enriching the Soft Actor-Critic (SAC) framework with the
capability to leverage sequential information.

3. Proposed Method
The following sections give detailed explanations of our pro-
posed method SACFormer step by step. We first introduce
the adapted online RL framework SAC. Then, we give an
overall illustration on the DT structure and specifically our
modifications to the DT architecture. Finally, we elaborate
on our method in detail.

3.1. Decision Transformer

Following DT (Chen et al., 2021), we introduce sequence
modeling to the actor network through considering a se-
quence of return-to-go and states. Here we denote Gt

(return-to-go) as the accumulated discounted reward at state
St. In SAC (Haarnoja et al., 2018b), the policy network
(actor) produces the mean and standard deviation of the
Gaussian distribution when using the Gaussian policy. Fol-
lowing this paradigm, we add two heads to the transformer
output to regress the two values instead of the original DT
implementation which directly predicts the next action At+1

based on all the previous return-to-gos, states and rewards

{(G1, S1, A1), (G2, S2, A2), · · · (Gt, St, At)} .

In contrast, we use a sequence of

{(G1, S1), (G2, S2), · · · (Gt, St)}

to predict the mean and standard deviation of the Gaussian
distribution at each state. To be specific, during training, a
sequence containing K tuples of return-to-go and state will
be sampled from the replay buffer (Mnih et al., 2013). This
sampled sequence will be the input of the GPT-2 model, i.e.,
the decoder block. In this way, we first embed Gt and St to
the same dimension and then stack them along the sequence
dimension to form a sequence as follows

(G1, S1, G2, S2, G3, S3, · · · , GK , SK),

which then has a length of 2K. In addition to state and
return-to-go embeddings, we manually added a positional
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embedding to each step in the sequence in time dimension.
Similarly for evaluation, we start from timestep 0 with a
state and preset return-to-go G1 (this is a manually set con-
stant and is task-specific). For every future steps, we update
the return-to-go as follows

Gt = Gt−1 −Rt−1, (1)

where Rt−1 is the instant reward received at step t − 1.
Following this pipeline, we can then obtain the expected
output in an autoregressive way. Note that we only use the
second dimension of the decoupled output hidden states
as the input to MLP heads as indicated by the solid black
line in Figure 1. In the design of the critic network, we
intentionally omit the incorporation of sequence information.
This decision is grounded in the objective of enhancing the
stability of the network’s output. By excluding temporal
or sequential dependencies from the critic’s architecture,
we aim to mitigate potential volatility in its predictions,
thereby fostering a more consistent and reliable evaluation
of state-action pairs.

3.2. Soft Actor-Critic

MDP is defined by a tuple (S,A, p, r). The space state
S and action space A are continuous. The state transition
probability p : S ×S ×A → [0, ∞) maps the current state
ST ∈ S and action AT ∈ A to the probability density of the
next state ST p ∈ S. On each transition, The environment
emits a reward r : S ×A → [rmin, rmax]. We will also use
ρπ(ST ) and ρπ(ST , AT ) to denote the state and state-action
marginals of the trajectory distribution induced by a policy
π(AT |ST ).

The SAC aims to learn a policy π(AT |ST )
that maximizes the expected sum of rewards∑

t E(ST , AT ) ∼ ρπr(ST , AT ), extended by the maxi-
mum entropy objective (see (Ziebart, 2010) which also
maximizes entropy at each visited state. This is expressed
as:

π∗ =argmax
π

∑
t

E(ST ,AT )∼ρπ

[
r(ST , AT )

+ αH(π( · |ST ))
]
,

(2)

where α is the temperature parameter that determines the
relative importance of the entropy term versus the reward,
and thus controls the stochasticity of the optimal policy.

To tackle large continuous domains, we employ function
approximators for both the soft Q-function Qθ(ST , AT ) and
the policy πϕ(AT |ST ), alternating between optimizing both
networks with stochastic gradient descent. The parameters
of these networks are θ and ϕ. We will next derive update
rules for these parameter vectors following (Haarnoja et al.,
2018b).

Here we first denote a sequence of states and discounted
returns (i.e., return-to-gos)

ST = {s1, s2, s3, · · · , sT }, (3)

where T is the current timestep in trajectory of an episode.
Similarly, we denote AT and GT as

AT = {a1, a2, a3, · · · , AT }, (4)

GT = {g1, g2, g3, · · · , gT }. (5)

Then, the soft Bellman residual under sequential contexts
can be written as

JQ(θ) =E(ST ,AT )∼D

[
1

2

(
Qθ(ST , AT )−

(
r(ST , AT )

+ γ EST+1∼p [Vθ̄(ST+1)]
))2]

,

(6)
where the value function is implicitly parameterized through
the soft Q-function parameters via

V (ST ) = EAT∼π [Q(ST , AT )− α log π(AT |ST )] , (7)

and it can be optimized with stochastic gradients

∇̂θJQ(θ) = ∇θQθ(ST , AT )

[
Qθ(ST , AT )−

(
r(ST , AT )

+γ
(
Qθ̄(ST+1, AT+1)− α log

(
πϕ(AT+1|ST+1)

))]
.

(8)
The update makes use of a target soft Q-function with pa-
rameters θ̄ that are obtained as an exponentially moving
average of the soft Q-function weights, which has been
shown to stabilize training (Mnih et al., 2015). Finally, the
policy parameters can be learned by directly minimizing the
expected KL-divergence in

πnew = arg min
π′∈Π

DKL

(
π′( · |ST )

∥∥∥∥∥ exp
(
1
αQ

πold(ST , · )
)

Zπold(ST )

)
.

(9)

(multiplied by α and ignoring the constant log-partition
function and by α):

Jπ(ϕ) =EST∼D

(
EAT∼πϕ

(
α log (πϕ(AT |ST ))

−Qθ(ST , AT )
)) (10)

Numerous strategies exist to minimize Jπ. Commonly in
policy gradient methods, the likelihood ratio gradient esti-
mator (Williams, 1992) is employed. This method circum-
vents the need for backpropagation through both the policy
and the target density networks. However, in our scenario,
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where the target density is represented by the differentiable
Q-function within a neural network, employing the reparam-
eterization trick is more advantageous. This approach offers
the benefit of a lower variance in the estimator compared
to traditional methods. To that end, we reparameterize the
policy using a neural network transformation

AT = fϕ(ϵt;ST , GT ), (11)

where ϵt is an input noise vector, sampled from some fixed
distribution, such as a spherical Gaussian. We can now
rewrite the objective in Equation 10 as

Jπ(ϕ) =EST∼D,ϵt∼N

[
α log πϕ(fϕ(ϵt;ST )|ST )

−Qθ(ST , fϕ(ϵt;ST ))
]
,

(12)

where πϕ is defined implicitly in terms of fϕ. We can
approximate the gradient of Equation 12 with

∇̂ϕJπ(ϕ) =∇ϕα log (πϕ(AT |ST ))

+
(
∇AT

α log (πϕ(AT |ST ))

−∇AT
Q(ST , AT )

)
∇ϕfϕ(ϵt;ST ),

(13)

where AT is evaluated at fϕ(ϵt;ST ). The DDPG style pol-
icy gradients (Lillicrap et al., 2015b) is extended to any
tractable stochastic policy through this unbiased gradient
estimator. A detailed description and implementation details
of the SAC can be found in (Haarnoja et al., 2018b).

3.3. SACFormer

In this section, we explain our method in detail concerning
the algorithm structure. The overall structure is depicted in
Figure 1. The SACFormer has an overall structure similar
to the actor-critic method with a critic network implemented
using a deep neural network and actor network modeled
in the form of decision transformer. A replay buffer is
constructed for online RL. However, compared with the
ordinary replay buffer that stores the experience tuple for
each environment step, our replay buffer stores the trajectory
of each environment episode to maintain the sequential
information. Compared with vanilla SAC, we output the
actions autoregressively based on our previously seen states
and return-to-gos, the detailed algorithm is illustrated in
Algorithm 1 and Algorithm 2.

4. Experiments
The objective of our experiments is to explore the efficacy of
integrating DT into an online SAC framework. We compare
SACFormer against existing online actor-critic methods on a
set of challenging continuous control tasks from the OpenAI

Critic

Network

Replay 

Buffer

Actor 

Network

Enviroment

GPT-2

MLP

Action

... ...

Q Loss

+

Policy Loss

Last

Hidden States

Figure 1. Structure of proposed method SACFormer. An actor
network is formed based on DT (Chen et al., 2021) by taking
the discounted returns and states as input. A critic network is
constructed based on a simple neural network. The policy loss and
Q loss are jointly optimized.

gym benchmark suite (Brockman et al., 2016). In addition,
we scrutinize the impact of varying sequence lengths on the
model’s performance. In the following sections, we provide
detailed insights into the implementation and experimenta-
tion of our method.

4.1. Implementation Details

Environments. We use five environments from OpenAI
gym benchmark suite (Brockman et al., 2016) which are
Walker2d-v2, Humanoid-v2, HalfCheetah-v2, Ant-v2 and
Hopper-v2. We refer readers to (Fu et al., 2020) for detailed
information about the environments.

Model Architecture. We use a GPT-2 (Radford et al., 2019)
model as the backbone of actor network with three layers
and a hidden state dimension of 128. For the critic network
and the target critic network, we follow the setting of Q
network directly from (Haarnoja et al., 2018b).

Hyperparameter and Training Setting The dropout rate
of the GPT-2 model is set to 0.1 and the learning rate is set to
0.0003. The discount factor γ for calculating return-to-goal
is set to 0.99. We use soft parameter update (Lillicrap et al.,
2015a) to update the target network with a target smoothing
coefficient τ of 0.005. The training batch size is set to 128
and we use the Adam (Kingma & Ba, 2014) optimizer for
both actor and critic. During training, the sequence length
K is set to 6 for all the environments.

For more details on the implementation of our method,
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(a) Ant-v2 (b) HalfCheetah-v2

(c) Hopper-v2 (d) Walker2d-v2

Figure 2. Average episode return on four Open AI Gym tasks of SACFormer and four other baseline methods. SACFormer (blue) achieved
competitive results in all the environments.

please refer to our GitHub repository.

4.2. Baselines

In this section, we present several baseline methods in on-
line RL against which we evaluate the performance of our
proposed methods.

Deep Deterministic Policy Gradient (DDPG): DDPG (Lil-
licrap et al., 2015a) is a model-free algorithm that merges
DPG and DQN concepts, excelling in continuous action
spaces. It uses a policy network for action selection and a
Q-network for evaluation, incorporating off-policy learning
and a replay buffer for efficiency.

Proximal Policy Optimization (PPO): PPO (Schulman
et al., 2017) is a policy gradient method known for its sim-
plicity and effectiveness, using a clipped objective to ensure
moderate policy updates. It’s well-suited for various en-
vironments, particularly those with complex observation
spaces.

Twin Delayed DDPG (TD3): TD3 (Fujimoto et al., 2018)

improves upon DDPG by introducing twin Q-networks and
a delayed policy update, reducing overestimation bias. This
makes it more stable and reliable for continuous control
tasks.

Soft Actor-Critic (SAC): SAC (Haarnoja et al., 2018b)
optimizes a stochastic policy in an entropy-enhanced reward
framework, balancing expected return and exploration. Its
efficiency and robustness make it a preferred choice for
tasks needing strong exploration tactics.

4.3. Results

For experiments on all the environments, we report the
average episode return on 4 testing episodes every 2000
training steps and all the results are averaged over three
different random seeds. We follow (Li, 2021) to report
the benchmark results on TD3, DDPG and PPO. The re-
sults are visualized in Figure 2. From the results, we can
see that our SACFormer outperforms all other methods in
two environments Ant-v2 and HalfCheetah-v2. In Hopper-
v2, it converges to almost the same average episode return

https://github.com/XTTTZ/SACFormer
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Algorithm 1 SACFormer (Training)
Randomly initialize critic network Q(s, a|θQ) and actor
π(s|θπ) with weights θQ and θµ.
Initialize target network Q′ with weights θQ

′ ← θQ.
Initialize trajectory replay bufferR.
repeat

Initialize a random process N for action exploration
Receive initial observation state s1
Initialize a trajectory array T
repeat

Select actions at = π(ST , GT |θπ) +Nt according
to the current policy and exploration noise
Execute action at and observe reward rt and observe
new state st+1

Store transition (st, at, rt, st+1) in T
for 1 to #Gradient update steps do

Sample a random minibatch of N × K steps
(si, ai, ri, si+1) from N trajectories inR
Predict next step actions AT+1 and next log π
using actor network.
Calculate next step q-values qT+1 using critic net-
work.
Calculate current step q-values qT .
Calculate critic q-loss MSE(qT , qT + 1).
Predict current step actions AT using ST and GT .
Predict q-values of the predicted actions using
actor network.
Calculate policy loss using Equation 13.
Backpropagation; update parameters.

end for
until done
Push T toR.

until Max total steps

Algorithm 2 SACFormer (Inference)
Initialize actor network π(s|θπ) with trained weights θπ .
Receive initial observation state s1.
Set initial return-to-go G1 to a constant value.
Initialize states sequence S = [s1].
Initialize return-to-go sequence G = [G1].
repeat

Generate action at autoregressively using π condi-
tioned on S and G: at = π(S,G|θπ).
Execute action at and observe new state st+1.
Append new state to states sequence: S = [S; st+1].
Update return-to-go Gt+1 using Equation 1.
Append updated return-to-go to sequence: G =
[G;Gt+1].

until done

as SAC and outperforms all other baselines. This results
demonstrate the effectiveness of our method in enhancing

the actor-critic methods by introducing sequential informa-
tion into the network. For Walker2d-v2, it failed to out-
perform SAC mainly due to the inherent complexities and
challenges present in the Walker2d-v2 environment. Unlike
Ant-v2 and HalfCheetah-v2, where SACFormer’s enhanced
capability to process sequential information proves signifi-
cantly advantageous, the Walker2d-v2 environment presents
unique dynamics that are less amenable to this approach.

The Walker2d-v2 environment requires a more nuanced bal-
ance and coordination, aspects that are not solely depen-
dent on the agent’s ability to process sequential information.
This indicates a potential area for further improvement in
SACFormer. Specifically, it suggests the need for a more
sophisticated approach to handle environments where dy-
namic balancing and intricate motor control play a critical
role in achieving high performance.

4.4. Ablation Study

In this section, we explore how the length of sequence
modeling during training affects the overall model perfor-
mance. In this experiment, we implement our method to
the Humanoid-v2 environment since it has higher state and
action dimensions compared with environments explored in
Figure 2, which can be more sensitive to sequence informa-
tion. We set the sequence length K to 5, 10, and 15 during
training and run the experiment for 0.8 million steps. The
results are depicted in Figure 3. The model achieves optimal
performance at K = 10, which aligns with our expectations.
A shorter sequence length may fail to encapsulate sufficient
sequential information, thereby increasing model complex-
ity unnecessarily. Conversely, a longer sequence length
could lead to misinterpretations or result in hallucinated out-
puts, especially when processing more extended contexts.
Thus, a moderate length K = 10 strikes a balance, effec-
tively capturing relevant information without the drawbacks
associated with shorter or longer sequence lengths. Note
that the best setting of sequence length can vary between
environments. Therefore, different environments can have
different optimal K values.

5. Conclusion
In this project, we present SACFomer, an online RL frame-
work based on DT and SAC to enhance actor-critic methods
with sequence modeling and enable online RL in the archi-
tecture of DT. The method redesigns the actor network with
GPT-2 to model sequential relationships instead of normal
deep neural networks. Additionally, it adheres to SAC’s
loss definition, establishing a convergence criterion for the
model. The experiments demonstrated that our method
attains competitive performance in three out of four con-
tinuous control tasks. On top of that, an ablation study on
sequence length has also demonstrated the effectiveness
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Figure 3. Ablation experiment on sequence length K. The results
indicate that model with a moderate sequence length has the best
performance.

of the sequence information and how sequence length can
affect model performance. However, our method exhibits
certain limitations, such as slower convergence compared
to conventional Deep Q-Learning methods, primarily due to
the extended time required for the transformer to develop an
adequate feature representation. Additionally, the learning
process is not as stable as standard neural networks since
the GPT-2 architecture is deeper and more complex, and
thus tends to output higher variance. We believe in the fu-
ture, it is worth working on addressing SACFomer’s current
limitations and expanding research on online RL within the
DT framework.
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